Copied to
clipboard

G = C42.227D4order 128 = 27

209th non-split extension by C42 of D4 acting via D4/C2=C22

p-group, metabelian, nilpotent (class 3), monomial

Aliases: C42.227D4, C42.343C23, D43(C4○D4), D8⋊C45C2, C4⋊D821C2, C4⋊C811C22, D42Q85C2, (C4×D4)⋊7C22, C4⋊Q859C22, C22⋊D815C2, C8⋊C42C22, C4⋊C4.62C23, (C2×C8).36C23, C4.Q812C22, C41D435C22, C42.6C41C2, (C2×C4).307C24, (C2×D8).57C22, (C2×D4).90C23, C23.672(C2×D4), (C22×C4).447D4, D4⋊C421C22, C4.102(C8⋊C22), C23.46D45C2, C22⋊C8.20C22, C4⋊D4.164C22, C22.47(C8⋊C22), C22.26C246C2, (C2×C42).834C22, C22.567(C22×D4), (C22×C4).1023C23, (C22×D4).575C22, C2.108(C22.19C24), (C2×C4×D4)⋊64C2, C4.192(C2×C4○D4), (C2×C4).496(C2×D4), C2.32(C2×C8⋊C22), (C2×C4⋊C4).936C22, SmallGroup(128,1841)

Series: Derived Chief Lower central Upper central Jennings

C1C2×C4 — C42.227D4
C1C2C4C2×C4C42C4×D4C2×C4×D4 — C42.227D4
C1C2C2×C4 — C42.227D4
C1C22C2×C42 — C42.227D4
C1C2C2C2×C4 — C42.227D4

Generators and relations for C42.227D4
 G = < a,b,c,d | a4=b4=d2=1, c4=a2, ab=ba, cac-1=a-1b2, dad=ab2, cbc-1=dbd=a2b, dcd=a2c3 >

Subgroups: 532 in 244 conjugacy classes, 92 normal (28 characteristic)
C1, C2, C2, C4, C4, C22, C22, C22, C8, C2×C4, C2×C4, D4, D4, Q8, C23, C23, C42, C22⋊C4, C4⋊C4, C4⋊C4, C2×C8, D8, C22×C4, C22×C4, C2×D4, C2×D4, C2×Q8, C4○D4, C24, C8⋊C4, C22⋊C8, D4⋊C4, C4⋊C8, C4.Q8, C2×C42, C2×C22⋊C4, C2×C4⋊C4, C4×D4, C4×D4, C4⋊D4, C4⋊D4, C4.4D4, C41D4, C4⋊Q8, C2×D8, C23×C4, C22×D4, C2×C4○D4, C42.6C4, D8⋊C4, C22⋊D8, C4⋊D8, D42Q8, C23.46D4, C2×C4×D4, C22.26C24, C42.227D4
Quotients: C1, C2, C22, D4, C23, C2×D4, C4○D4, C24, C8⋊C22, C22×D4, C2×C4○D4, C22.19C24, C2×C8⋊C22, C42.227D4

Smallest permutation representation of C42.227D4
On 32 points
Generators in S32
(1 9 5 13)(2 8 6 4)(3 11 7 15)(10 16 14 12)(17 27 21 31)(18 24 22 20)(19 29 23 25)(26 32 30 28)
(1 29 15 21)(2 26 16 18)(3 31 9 23)(4 28 10 20)(5 25 11 17)(6 30 12 22)(7 27 13 19)(8 32 14 24)
(1 2 3 4 5 6 7 8)(9 10 11 12 13 14 15 16)(17 18 19 20 21 22 23 24)(25 26 27 28 29 30 31 32)
(1 10)(2 9)(3 16)(4 15)(5 14)(6 13)(7 12)(8 11)(17 28)(18 27)(19 26)(20 25)(21 32)(22 31)(23 30)(24 29)

G:=sub<Sym(32)| (1,9,5,13)(2,8,6,4)(3,11,7,15)(10,16,14,12)(17,27,21,31)(18,24,22,20)(19,29,23,25)(26,32,30,28), (1,29,15,21)(2,26,16,18)(3,31,9,23)(4,28,10,20)(5,25,11,17)(6,30,12,22)(7,27,13,19)(8,32,14,24), (1,2,3,4,5,6,7,8)(9,10,11,12,13,14,15,16)(17,18,19,20,21,22,23,24)(25,26,27,28,29,30,31,32), (1,10)(2,9)(3,16)(4,15)(5,14)(6,13)(7,12)(8,11)(17,28)(18,27)(19,26)(20,25)(21,32)(22,31)(23,30)(24,29)>;

G:=Group( (1,9,5,13)(2,8,6,4)(3,11,7,15)(10,16,14,12)(17,27,21,31)(18,24,22,20)(19,29,23,25)(26,32,30,28), (1,29,15,21)(2,26,16,18)(3,31,9,23)(4,28,10,20)(5,25,11,17)(6,30,12,22)(7,27,13,19)(8,32,14,24), (1,2,3,4,5,6,7,8)(9,10,11,12,13,14,15,16)(17,18,19,20,21,22,23,24)(25,26,27,28,29,30,31,32), (1,10)(2,9)(3,16)(4,15)(5,14)(6,13)(7,12)(8,11)(17,28)(18,27)(19,26)(20,25)(21,32)(22,31)(23,30)(24,29) );

G=PermutationGroup([[(1,9,5,13),(2,8,6,4),(3,11,7,15),(10,16,14,12),(17,27,21,31),(18,24,22,20),(19,29,23,25),(26,32,30,28)], [(1,29,15,21),(2,26,16,18),(3,31,9,23),(4,28,10,20),(5,25,11,17),(6,30,12,22),(7,27,13,19),(8,32,14,24)], [(1,2,3,4,5,6,7,8),(9,10,11,12,13,14,15,16),(17,18,19,20,21,22,23,24),(25,26,27,28,29,30,31,32)], [(1,10),(2,9),(3,16),(4,15),(5,14),(6,13),(7,12),(8,11),(17,28),(18,27),(19,26),(20,25),(21,32),(22,31),(23,30),(24,29)]])

32 conjugacy classes

class 1 2A2B2C2D2E2F2G2H2I2J2K4A···4H4I···4N4O4P8A8B8C8D
order1222222222224···44···4448888
size1111224444882···24···4888888

32 irreducible representations

dim11111111122244
type+++++++++++++
imageC1C2C2C2C2C2C2C2C2D4D4C4○D4C8⋊C22C8⋊C22
kernelC42.227D4C42.6C4D8⋊C4C22⋊D8C4⋊D8D42Q8C23.46D4C2×C4×D4C22.26C24C42C22×C4D4C4C22
# reps11422221122822

Matrix representation of C42.227D4 in GL6(𝔽17)

1600000
010000
0001600
001000
0000016
000010
,
1300000
0130000
0016000
0001600
000010
000001
,
010000
1600000
000010
0000016
0001600
0016000
,
0160000
1600000
000010
000001
001000
000100

G:=sub<GL(6,GF(17))| [16,0,0,0,0,0,0,1,0,0,0,0,0,0,0,1,0,0,0,0,16,0,0,0,0,0,0,0,0,1,0,0,0,0,16,0],[13,0,0,0,0,0,0,13,0,0,0,0,0,0,16,0,0,0,0,0,0,16,0,0,0,0,0,0,1,0,0,0,0,0,0,1],[0,16,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,16,0,0,0,0,16,0,0,0,1,0,0,0,0,0,0,16,0,0],[0,16,0,0,0,0,16,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,1,0,0,1,0,0,0,0,0,0,1,0,0] >;

C42.227D4 in GAP, Magma, Sage, TeX

C_4^2._{227}D_4
% in TeX

G:=Group("C4^2.227D4");
// GroupNames label

G:=SmallGroup(128,1841);
// by ID

G=gap.SmallGroup(128,1841);
# by ID

G:=PCGroup([7,-2,2,2,2,-2,2,-2,253,758,521,80,4037,1027,124]);
// Polycyclic

G:=Group<a,b,c,d|a^4=b^4=d^2=1,c^4=a^2,a*b=b*a,c*a*c^-1=a^-1*b^2,d*a*d=a*b^2,c*b*c^-1=d*b*d=a^2*b,d*c*d=a^2*c^3>;
// generators/relations

׿
×
𝔽